VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CSE: CBCS) III-Semester Main Examinations, December-2018

Discrete Structures

Time: 3 hours
Max. Marks: 60
Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q. No	Stem of the Question	M	L	CO	PO
2.	Define principle of duality and Write the dual of $\neg \mathrm{p} \vee \neg \mathrm{q} \wedge \mathrm{T}_{0}$	2	2	1	1
3.	Compute the prime factors of 540, 504	2	2	2	1,2
	What is partition? Compute the partitions for set $\mathrm{A}=\{2,3,5,6,7,1,9\}$	2	2	2	1
5.	Compute the recurrence relation for the number of comparisons to sort n numbers using bubble sort	2	2	3	1
	Compute the generating function for $\mathrm{P}_{\mathrm{d}}(\mathrm{n})$ where P_{d} is number of partitions of positive integer n into distinct Summands	2	3	3	1
7.	Define commutative Ring	2	2	4	1,2
8.	What is Euler's Totient function? and calculate Euler's Totient of 35	2	3	4	1,2
9.	$\mathrm{G}=\{0,1,2,3,4,5\}$ be a group under addition modulo 6 . Find the inverse of 5	2	2	5	1,2
$10 .$	What is the minimum distance of a code consisting of the code words 001010,011100,010111,011110,101001?	2	4	5	1,2
Part-B ($5 \times 8=40 \mathrm{Marks}$)					
11. a	Justify $\neg \mathrm{p}$ is a valid conclusion from $\mathrm{p} \rightarrow \mathrm{r}, \mathrm{r} \rightarrow \mathrm{s}, \mathrm{t} \vee \neg \mathrm{s}, \neg \mathrm{t} \vee \mathrm{u}, \neg \mathrm{u}$	4	2	1	1
	Find $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ if $\mathrm{a}=1820$ and $\mathrm{b}=231$ using Euclidian algorithm	4	2	1	1
12. a)	Let $\mathrm{A}=\{1,2,3,4\}, \mathrm{b}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{c}=\{\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}\}$ with $\mathrm{f}: \mathrm{A}->\mathrm{B}$ and $\mathrm{g}: \mathrm{B}->\mathrm{C}$ given by $\mathrm{f}=\{(1, \mathrm{a}),(2, \mathrm{a}),(3, \mathrm{~b}),(4, \mathrm{c})$ and $\mathrm{g}=\{(\mathrm{a}, \mathrm{x}),(\mathrm{b}, \mathrm{y}),(\mathrm{c}, \mathrm{z})\}$ for each element of A. Show that $(g \circ f)^{-1}=f^{l} \circ g^{-1}$	4	3	2	1
	In how many ways can the 26 letters of the alphabet be permuted so that non of the patterns car, dog, pun occurs?	4	2	2	1
13. a)	Solve the recurrence relation $2 a_{n}=7 a_{n-1}-3 a_{n-2}, n \geq 2$ and $a_{0}=2, a_{1}=5$	4	3	3	1,2
	Find coefficient of x^{8} in the series $\frac{1}{(1-2 x)^{2}(1-3 x)}$	4	2	3	1,2
	Find the minimum value of X which satisfies the following simultaneous equations $\begin{aligned} & X \equiv 14(\bmod 31) \\ & X \equiv 16(\bmod 32) \\ & X \equiv 18(\bmod 33) \end{aligned}$	4	4	4	1,2
	Compute $342{ }^{15} \mathrm{mod} 61$ using Euler's theorem	4	3	4	1

15. a) Verify $\mathrm{G}=\{0,1,2,3,4,5,6,7\}$ is a group under addition modulo 8 .
b) Prove that the set of idempotent elements of M for any abeleian monoid ($\mathrm{M},{ }^{*}$) forms a sub monoid
16. a) Apply Mathematical induction to verify $\sum_{i=1}{ }^{n} i\left(2^{i}\right)=2+(n-1) 2^{n+1}$
b) Find prime factorization of 327236910
17. Answer any two of the following:
a) There are four colors poker chips -red, white, green and blue. Find and solve the recurrence relation for the number of ways to stack n of these poker chips so that there are no consecutive blue chips.
b) Show that $\left(\mathrm{M},{ }^{*}\right)$ is an abelian group where $M=\left\{A, A^{2}, A^{3}, A^{4}\right\}$ where $A=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$
And * is an ordinary matrix multiplication, Also prove that ($\mathrm{M},$.$) is$ isomorphic to the abelian group $(G, X) G=\{1,-1, i,-i\}$ where X is an ordinary multiplication
c) Define the encoding function $\mathrm{E}: \mathrm{Z}_{2}{ }^{3}{ }^{->} \mathrm{Z}_{2}{ }^{6}$ by means of the parity-check matrix H given as below
a) determine all code words
b) Does this code correct all single errors in transmission

$$
H=\left(\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

4	2	5	1
4	3	5	1,2

4	2	1	1

$\begin{array}{llll}4 & 2 & 2 & 1\end{array}$
$4 \quad 2 \quad 31,2$

4241,2

4351,2

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	60
2	Knowledge on application and analysis (Level-3 \& 4)	40
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	---

