Hall Ticket Number:

Time: 3 hours

Code No. : 13216

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CSE: CBCS) III-Semester Main Examinations, December-2018

Discrete Structures

Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q. N	Stem of the Question	Μ	L	CO	PO
	Part-A $(10 \times 2 = 20 \text{ Marks})$				
1.	Show that $[(r \land s) \rightarrow q] \rightarrow [\neg (r \land s) \lor q)]$ is a tautology.	2	2	1	1
2.	Define principle of duality and Write the dual of $\neg p \lor \neg q \land T_0$	2	2	1	1
3.	Compute the prime factors of 540, 504	2	2	2	1,2
4.	What is partition? Compute the partitions for set $A = \{2,3,5,6,7,1,9\}$	2	2	2	1
5.	Compute the recurrence relation for the number of comparisons to sort n numbers using bubble sort	2	2	3	1
6.	Compute the generating function for $P_d(n)$ where P_d is number of partitions of positive integer n into distinct Summands	2	3	3	1
7.	Define commutative Ring	2	2	4	1,2
8.	What is Euler's Totient function? and calculate Euler's Totient of 35	2	3	4	1,2
9.	$G=\{0,1,2,3,4,5\}$ be a group under addition modulo 6. Find the inverse of 5	2	2	5	1,2
10.	What is the minimum distance of a code consisting of the code words 001010,011100,010111,011110,101001?	2	4	5	1,2
	Part-B $(5 \times 8 = 40 \text{ Marks})$				-
11.	a) Justify $\neg p$ is a valid conclusion from $p \rightarrow r, r \rightarrow s, t \lor \neg s, \neg t \lor u, \neg u$	4	2	1	1.
	b) Find gcd(a,b) if a=1820 and b=231 using Euclidian algorithm	4	2	1	1
12.	 a) Let A={1,2,3,4}, b={a,b,c} and c={w,x,y,z} with f:A->B and g:B->C given by f={(1,a),(2,a),(3,b),(4,c) and g={(a,x),(b,y),(c,z)} for each element of A. Show that (g o f)⁻¹ = f¹og⁻¹ 	4	3	2	1
	b) In how many ways can the 26 letters of the alphabet be permuted so that nor of the patterns car, dog, pun occurs?	4	2	2 2	1
13.	a) Solve the recurrence relation $2a_n=7a_{n-1}-3a_{n-2}$, $n \ge 2$.and $a_0=2$, $a_1=5$	4	3	3	1,2
	b) Find coefficient of x^8 in the series $\frac{1}{(1-2x)^2(1-3x)}$	4	2	2. 3	1,2
14.	 a) Find the minimum value of X which satisfies the following simultaneous equations X ≡ 14 (mod 31) X ≡ 16 (mod 32) X ≡ 18 (mod 33) 	4	2	4	1,2
	b) Compute 342 ¹⁵ mod 61 using Euler's theorem	4		3 4	1

Code No. : 13216

in a first state and a state of the state of				
15. a) Verify $G=\{0,1,2,3,4,5,6,7\}$ is a group under addition modulo 8.	4	2	5	1
b) Prove that the set of idempotent elements of M for any abeleian monoid (M,*) forms a sub monoid	4	3	5	1,2
16. a) Apply Mathematical induction to verify $\sum_{i=1}^{n} i(2^{i})=2+(n-1)2^{n+1}$	4	2	1	1
b) Find prime factorization of 327236910	4	2	2	1
17. Answer any two of the following:				
a) There are four colors poker chipsred, white, green and blue. Find and solve the recurrence relation for the number of ways to stack n of these poker chips so that there are no consecutive blue chips.	4	2	3	1,2
 b) Show that (M, *) is an abelian group where M= {A,A², A³, A⁴} where A= 0 1 -1 0 And * is an ordinary matrix multiplication, Also prove that (M, .) is isomorphic to the abelian group (G, X) G={1,-1,i,-i} where X is an ordinary multiplication 	4	2	4	1,2
c) Define the encoding function E: Z ₂ ³ -> Z ₂ ⁶ by means of the parity-check matrix H given as below	4	3	5	1,2
 a) determine all code words b) Does this code correct all single errors in transmission H= 101100 110010 101001 				

:: 2 ::

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	60
2	Knowledge on application and analysis (Level-3 & 4)	40
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable)	-

ശശ്ശാത്രത